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Robust Control of Uncertain Systems via

Dissipative LQG-Type Controllers

Suresh M. Joshi t

NASA Langley Research Center

Hampton, Virginia 23681

Abstract

Optimal controller design is addressed for a class of linear, time-invariant systems which

are dissipative with respect to a quadratic power function. The system matrices are assumed

to be alpine functions of uncertain parameters confined to a convex polytopic region in the

parameter space. For such systems, a method is developed for designing a controller which

is dissipative with respect to a given power function, and is simultaneously optimal in the

linear-quadratic-Gaussian (LQG) sense. The resulting controller provides robust stability as

well as optimal performance. Three important special cases, namely, passive, norm-bounded,

and sector-bounded controllers, which are also LQG-optimal, are presented. The results give

new methods for robust controller design in the presence of parametric uncertainties.

1 Introduction and Problem Statement

Over the past three decades, a number of design methods have been developed for control of

dynamic systems with uncertainties. The methods include H_, p- synthesis, passivity, etc.

The objective is to obtain closed-loop robust stability and optimal performance in spite of

model uncertainties. A large class of dynamic systems can be characterized as "dissipative

systems" which have the property that some of the energy put into the system gets dissipated.

The term "energy" is defined in a very general sense, and thus the property of dissipativity
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encompassesa number of subclasses(for example,passivesystems). A major advantageof

dissipativesystemsis that they canbe robustly stabilized by a controller that itself satisfies

a certain dissipativity condition.

This paperpresentsanapproachfor the control of dissipativesystemsvia linearquadratic

Gaussian(LQG) controllers that are alsorestricted to be dissipative. The method employs

the above-mentionedstabilization result to ensurerobust closed-loopstability, and optimal

LQG-type controller to achievethe required performance. The approach generalizesthe

LQG-optimal passivecontroller designof [1] to a broad classof dissipative systems. The

method is subsequentlyspecializedto three important subclassesof dissipative systems,

namely,passivesystems,norm-boundedsystems,and sector-boundedsystems.

1.1 Dissipative Systems

Consider a linear, time-invariant system E:

k= Ax + Bu; y=Cx (1)

where x, u, y are n-, m-, and m- dimensional state, input, and output vectors respectively.

We assume that A has all eigenvalues in the closed left-half plane.

Define the quadratic "power function"

p(y, = [yT, [

The following definition is based on [2], [3].

QN]I ] ,2,N T R u

Definition- The system E is said to be dissipative with respect to the power function p(y, u)

if there exists a positive definite quadratic "energy function" E(x) = xTpx with P = pT > 0

such that the following dissipation inequality is satisfied:

fTp(y, u)dt >_ E[x(T)] - E[x(0)] (3)
J0

VT • [0, oc) and Vu • £2"_.
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(£_ denotesthe extendedLebesguespaceof functions that aresquare-integrableoverall

finite intervals).

form as:

The dissipativity condition abovecan also be expressedin the differential

dE(x) S p(y,

Three important special cases of dissipative systems are defined below.

(4)

Definition- A system which is dissipative with respect to the power function p(y, u) in Eq.

(2) is said to be

• Passive if Q=0, R=0, andN=I.

• Norm-bounded ifQ =-I, R=72I, and N= 0 for some finite7 > 0. In this case,

7 -> H_-norm of the system.

• sector-bounded inside the sector [a, b], a < 0 < b if Q = -I, R = -abI, and N = o_I

with _ = (a + b)/2.

It should be noted that norm-bounded and sector-bounded systems have to be stable (i.e.,

all eigenvalues of A must have negative real parts) while passive systems can be marginally

stable.

1.2 Stability of Feedback Interconnection

The following result, referred to as the dissipativity lemma, is from [4].

Lemma- The system E is dissipative with respect to the power function p(y, u) in Eq. (2)

iff there exists a symmetric, positive-definite matrix P and matrices L and W such that the

following equations are satisfied

ATp q- PA = cTQc -- LTL

PB = cT(QD + N) - LTw

R + NTD + DTN + DTQD = wTw

(s)

(r)
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Or equivalently, iff the following linear matrix inequality (LMI) is satisfied for somesym-

metric positive definite matrix P

AT p + PA - CT QC

BTp -- (QD + N)Tc

PB - CT(QD + N)

-(R + NTD + DTN + DTQD)
_<o (8)

A definition of strict dissipativity is given next, which is a generalization of the "weak

strict positive real (WSPR)" definition given in [5].

Definition- If A is Hurwitz, (A, L) is observable, and [A, B, L, W] is minimum-phase, the

system E is said to be strictly dissipative with respect to power function p(y, u).

We consider feedback-interconnected dissipative systems E1 and E2, which are dissipative

with respect to power functions pl and p2 defined as follows:

(9)
NT Ri JL Ju

The following result from [4] gives a sufficient condition for stability.

Theorem 1- Consider two systems E_ and E2 connected in the negative feedback config-

uration (Figure 1). Suppose E1 is dissipative with respect to pl and E2 is dissipative with

respect to p2. Then the interconnected system is Lyapunov stable if there exist scalars C_l > 0

and c_2 > 0 such that

 lpl(y, + y) _<0 w, y • Rm (10)

Furthermore, if at least one of the systems is strictly dissipative, then the interconnected

system is asymptotically stable.

The systems E1 and E2 can be considered to be the plant and the controller, respectively.

The significance of above result is that the stability is robust to model uncertainties; as long

as the plant is dissipative with respect to power function pl, any controller which is dissipative

with respect to power function p2 will stabilize it, provided that the condition of Theorem 1 is

satisfied. For example, if the plant is passive, it is stabilized by any strictly passive controller

[5]; if the plant is norm-bounded by % any controller which is strictly norm-bounded by 1/7

will stabilize it; and if the plant belongs to sector [a, b], any controller which belongs (strictly)
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to sector [-},-}] will stabilize it. In the case of passive systems, it is possible to further

weaken the requirement of strict passivity to marginally strict passivity [6].

We consider a class of systems $(0) given by

k = A(O)x + B(O)u + v; y= C(O)x + w (11)

where 0 E R a denotes the vector of uncertain parameters and x, u, y are n-, m-, and m- di-

mensional state, input, and output vectors respectively, v and w denote zero-mean Gaussian

white noise processes with covariance intensities Qf and Rf respectively. A(O), B(O), C(O)

are appropriately dimensioned matrices that are assumed to be affine functions of the pa-

rameter vector 0. The parameter vector 0 assumed to lie in a convex polytopic region 7) in

the parameter space, bounded by vertices 0j, j = 1, 2,... l. For example, if each component

of 0 lies in an interval [_0i,0i], 7) would be a hyper-rectangular box in R k, and the number

of vertices l = 2k. We assume that the system is stable (i.e., A(O) has all eigenvalues in the

open left-half plane), and the realization is minimal in the entire region 7) . The system is

assumed to be strictly proper because the objective is to design an LQG-type controller.

Suppose the nominal system is represented by the following minimal realization

k = Ax + Bu + v; y = Cx + w (12)

The problem is to obtain a controller which minimizes the performance function

J= lim lgf0 TT--+ec (XTQrX + UTRrU)d_ (13)

and maintains closed-loop stability in the presence of parametric uncertainties, where Qr > 0

and Rr > 0 are appropriately dimensioned symmetric matrices.

1.3 Dissipativity in the Presence of Uncertain Parameters

The following theorem gives a sufficient condition for the system to be dissipative in the

presence of parametric uncertainties, and is a generalization of the result in [7] for passive

systems.
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Theorem 2-The system [A(0), B(O), C(0)] is dissipative with respect to the quadratic power

function p(y, u) defined in Eq. (2) V0 E P if there exists a matrix P = pT > 0 such that

A(OJ)TP+ PA(Oj) - C(OJ)TQC(Oj)B(OJ)TF- XTC(OJ)
Z(OJ,P) :=

PB(OJ)--RC(OJ)_N)] <_0

for j = 1,2,...l (14)

Proof- The proof is similar to that for the quadratic stability case [8]. Because P is a convex

region in the parameter space, the function 5c = zTZ(O, P)z is convex in 0 Vz E R _+m.

Therefore 5c takes on its maximum value at one or more of the vertices of P, and thus

Z(O,P) <_ 0 VO E 79 if (14) is satisfied. •

The significance of this property ("robust" dissipativity) is that any controller satisfying

condition (10) can robustly stabilize the system. For example, for passive systems, one can

determine the largest region 79 in which the system remains passive [7]. For norm-bounded

systems, one can determine the largest 79 in which the system norm remains below a certain

value (7), or for given 79, the smallest norm of the system. For sector-bounded systems, one

can determine the largest 79 for a given sector [a, b], or the smallest sector for a given 79. For

these three cases, any controller that is (respectively) passive, or norm-bounded (by 7-1), or

inside the sector [-b -1, -a-l], will robustly stabilize the system. The next section addresses

design of such robust controllers that are also optimal.

2 Optimal Controller

Given that an uncertain plant is dissipative with respect to a quadratic power function pl,

the approach considered in this paper is to design an optimal controller which is restricted

to be dissipative with respect to a quadratic power function P2 chosen in such a way that

the conditions of Theorem 1 are satisfied.
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2.1 A Special Realization

Suppose the system (12) is dissipative with respect to the quadratic power function Pl with

weights (QI,N_,R_). Then 3 a matrix P_ = pT > 0 such that (8) is satisfied. Suppose

F E R _×_ is a square root of P_, i.e., P1 = FTF. Using the coordinate transformation

= Fx, the system (omitting the noise terms) becomes

= A_+/)u (15)

y = C_ (16)

where A = FAr -1, /) = FB, d = Cr -1. Premultiplying (8) (with D = 0) by diag[r -T, G]

and postmultiplying by its transpose, we have

Therefore, without loss of generality, it will be assumed that the system is in this form,

i.e., (8) is satisfied with P = I, and the "hat" notation will be dropped in the subsequent

material.

2.2 LQG-Optimal Controller

For the nominal system, it is well-known that the controller which minimizes J consists of a

linear-quadratic regulator (LQR) and a Kalman-Bucy filter (KBF), and is given by:

xc = Acx_ + B_y (18)

y_ = C_xc u= -y_ (19)

where

A_ = A - BR_BTp r - pICTRT_C B_ = pICTR7 _

PrA + ATpr -- PrBRrlBTpr + Qr = 0

PIA T + AP I - pICTR]ICPI+QI=O

G= R - BTPr (20)

(21)

(22)
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The problem is to find an LQG controller that is dissipativewith respectto the quadratic

power function p2 with given weights (Q2, N2, R2). It is assumed that Q2 _< 0, which is

usually the case for most dissipative systems.

Two cases, R2 > 0 and R2 = 0, will be considered separately. The following theorem

gives an LQG controller that is dissipative with respect to p2 for the case R2 > 0.

Theorem 3- Suppose R2 > 0, and the LQG performance function weights are such that

Rr >0, Qr >O,and

Rr >_ N2R;1Nf - Q2 (23)

Qr >

-cTR71CPr - PrCTR7Ic

Q_ = QA + Or(R71 - Q1)C >_o

(24)

(2_)

Then the resulting LQG controller is strictly dissipative with respect to the power function

Q2 ,26,N T R2 u

Proof- The controller (Ac, Be, Co) is dissipative with respect to p2 iff 3 a matrix Pc = PT > 0

such that

I A_Pc +PcAc- C_Q2Cc PcBc- CTN2 / < 0 (27)

"3

zc := B_['c- Nf Cc -R2 J -

Since R2 > 0, the above is equivalent to the following condition [9]:

A_Pc +PcAc - C[Q2Cc + (PcBc - T -1 Tc; N_)R_ (BePc- N:Cc) _<0

After substituting for Ac, Be, Co, (28) becomes

(A- BR;1BTp,. - pICTR_IC)Tpc + Pc(A- BR;1BTp,. - pICTR_IC)

-PrBRrlQ2Rrl BT pr

-(pcp_crRj I - prBRrlN_)R7 l(PcP_CrRi I - prBRrlNS

<0

8
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Noting from (17) and (25) that the filter algebraicRiccati equation (ARE) (22) is satisfied

with Pf = I, using the control ARE (21), and letting Pc = Pr, (29) can be written as

_@ _ PrB[RrI+ RrlQ2Rr 1_ RrlN2R_IN[Rrl]BTpr

+ pr[c_R71R_IRTlc - c_RiIR_IN[ R;IB_ - BR; IN_R_IRilC]P<

--cTRilCPr -- PrCTRilc <_ 0

From (23),

Rr + Q_ - N_}{_IN[_>0

(30)

(31)

Pre- and post-multiplying the above by Rr 1,

R; 1 + R;1Q2R; 1 - RT1N2R_INTR71 > 0 (32)

From (24) and (32), (30) [and therefore (28)] is satisfied (with strict inequality "< ") and

the LQG controller (Ac, Be, Co) is dissipative with respect to p2 (y, u).

Inequality (27) holds in the strict sense; hence in (27),

Zc=-I LT][LcWc]<OwT (33)

where Lc E R p×_ and Wc E R p×m (p > n + m) are of rank n and m respectively. Because

(27) holds in the strict sense and Q2 < 0, Ac is Hurwitz. (Ac, Lc) is observable because Lc

is of rank n. The transfer function of (Ac, Be, Lc, We) is non-square and has no transmission

zeros. Thus the controller is strictly dissipative with respect to the power function P2. •

Remark 1- For most common dissipative systems, usually Q1 < 0; therefore, (25) is

satisfied for any Rf > 0.

Remark 2- It should be noted that it is always possible to choose the performance

function weights to satisfy the conditions of Theorem 3. The procedure for designing an

LQG controller that is dissipative with respect to a given power function p2 consists of the

following steps:

• Obtain a solution P1 to the dissipativity LMI for the nominal system and transform

to the special realization of (15), (16)
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• ChooseLQR control weighting matrix Rr > 0 satisfying (23), and the state weighting

matrix @ based on the performance requirements

• Solve the control ARE (21) to get P_

• Choose R I such that (24) is satisfied; choose QI as in (25)

• The controller is given by (20) with P/= I

Remark 3- It should be noted that the KBF weighting matrices Q/and R/are used as

design parameters and have no statistical significance.

When R2 = 0, perhaps the only case of interest is when Q2 = 0 and N2 = I, which

corresponds to passivity. In this case, the LQG controller is passive iff

[ ATpc +PcAc PcBc - C[B[Pc-Cc 0
_< 0 (34)

As shown in [1], the above condition is satisfied with Pc = P_ if

Qr > BRrlB T (35)

/_f : /_r (36)

QI = -(A + A T ) + BRjIB T (37)

It should be noted that the above LQG controller is weakly strict positive real (WSPR),

i.e., it is stable, minimum-phase, and positive real, even when the open loop system is only

marginally stable.

When R2 > 0, two important special cases are norm-bounded and sector-bounded LQG

controllers.

Corollary 3.1: Norm-bounded controller- Suppose the LQG performance functions

weights are such that Qr > 0 and

R_ >I

Qr > _-2prCTRf2CPr - cTRflCPr - PrCTRf 1C

Qf = -(d + A T ) + CTRi'C

(38)

(39)

(40)
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Then the controller is norm bounded by 7, i.e., IIG,:(s)ll_ _<7, where Go(s) = C'_(sI-

A,:,)-IB,:,.

Note that (38), (39), and (40) correspond to (23), (24), and (25) of Theorem 3 (with

Q2 = -I, R2 = 721, N2 = 0).

Corollary 3.2" Sector-bounded controller- Suppose the LQG performance functions

weights are such that Qr > 0 and

[ (a-+-b)2]4abjRr_ 1 ,I (41)

er >- "rEC' RgC- (C' RT Rr "+.RrW C)(a +V)/2]'r
-C T R_ICP_ - P_C T R_IC (42)

Qf = -(A + A T ) + C TR]_C (43)

Then the controller belongs to the sector [a, b] (a < 0 < b) in the strict sense.

Remark 4- Design of LQG controllers that belong to the [0,-_) sector for systems

belonging to the [a, oc) sector was considered in [10], [11].

3 Concluding Remarks

Design of linear quadratic Gaussian (LQG) controllers was considered for a class of uncer-

tain systems which are dissipative with respect to a quadratic power function. The system

matrices were assumed to be affine functions of parameters belonging to a convex polytopic

region. A method was given for designing an LQG controller that is dissipative with respect

to a given quadratic power function. Three important special cases, passive, norm-bounded,

and sector-bounded controllers, were presented. By appropriately choosing the weighting

functions, the controller can be designed to provide optimal performance as well as robust

stability in the presence of parametric uncertainties.
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